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Abstract.  We study some properties between the lattice of all monotonic maps and the 
lattice of all generalized topologies on a nonempty set. We present a covariant and 
contravariant Galois connection between them. We also define the direct sum of two 
monotonic maps and characterize the direct sum; and give an interesting lower and upper 
bound for enlarging and restricting maps.  
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1.  Introduction and preliminaries 

 
For the last one decade or so, the researchers are concerned with the 

investigations of generalized topological spaces. A′ . Cs a′ sz r [3, 4], using 
monotonic maps from the family of all subsets of a nonempty set 

a′
X  to itself and 

established some generalized topologies on X . The lattice of all generalized 
topologies on a nonempty set was studied in [2]. In this paper we discuss some 
properties between the lattice of all monotonic maps and the lattice of all 
generalized topologies on a nonempty set. 

Let X  be a set and denote )(XΓ  the collection of all monotonic maps from 
the power set )(Xρ  into itself (i.e.  implies BA⊆ BA γγ ⊆  for )(XΓ∈γ , where 
we write Aγ  for )(Aγ ). According to [3], a set  is said to be XA⊆ γ -open iff 

AA γ⊆  and the collection γμ  of all γ -open sets is a generalized topology (briefly 
GT) in the sense of [4], i.e. γμ∈∅  and any union of elements of γμ  belongs to 

γμ . Similarly, for every )(XΓ∈γ  the collection })(|{= AXAXA −⊆−γμγ  is a 
GT on X . Conversely, according to [5], if μ  is a GT on X  and XA⊂ , then 

 is a mapping }|{= AMMAi ⊆∈μμ U )()(: XXi ρρμ →  such that it is 
monotone, idempotent and restricting, where )(XΓ∈γ  is said to be idempotent iff 

AA γγγ =  for , restricting iff XA⊆ AA⊆γ  for . Similarly, if 
, then  is again monotone and idempotent but 

enlarging, where 

XA⊆

},|{= μμ ∈−⊆ NXNANAc I μc
)(XΓ∈γ  is said to be enlarging iff AA γ⊆  for . 

Moreover,  and  are conjugate, i.e.  implies . We 
XA⊆

μi μc XA⊆ )(= AXiXAc −− μμ
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denote by  and )(XieΓ )(XirΓ  the collection of all idempotent enlarging maps, and 
the collection of all idempotent restricting maps in )(XΓ , respectively. 

Let  be the collection of all generalized topologies on )(Xg X . According to 
[2],  is a bounded lattice, neither distributive nor complemented, 
where its join and meet in  are defined by 

,1,0),),(( ∧∨Xg
)(Xg },|{= λμλμ ∈∈∪∨ BABA  and 

λμλμ ∩∧ = ; and }{=),0(=1 ∅Xρ . Let )(, XΓ∈δγ . We say γ  is weaker than 
of δ  if δγ ≤ , i.e. AA δγ ⊆  for . It is well known that XA⊆ ,1,0),),(( ∧∨Γ X  is a 
complete lattice, where the join and meet of )(, XΓ∈δγ  are defined by 

AAA δγδγ ∪∨ =)(  and AAA δγδγ ∩∧ =)(  for . The least and the greatest 
elements  are maps 

XA⊆
0,1 ∅γ  and Xγ , respectively, where we denote by Mγ  the map 

MA =γ  for , see [7]. XA⊆
 
2.  Galois connections 
 

Recall that a (covariant) Galois connection between preordered classes  and S
T  is a pair  of order-preserving maps  and  with the 
property that for all 

),( gf TSf →: STg →:
Ss∈  and Tt∈ , stg ≤)(  iff )(sft ≤ . The latter condition is 

equivalent to: ssfg ≤)(o  for all Ss∈  and )(tgft o≤  for all Tt∈ , see [1, 6]. If 
 is a Galois connection, then  preserves meets and ),( gf f g  preserves joins. 

Moreover,  and  are idempotent,  and  
Dually, a contravariant Galois connection is a pair  of order-reversing maps 

 and  between preordered classes provided that for all  
and ,  iff 

gf o fg o gfgg oo= fgff oo= .
),( gf

TSf →: STg →: Ss∈
Tt∈ )(tgs ≤ )(sft ≤ , or equivalently )(sfgs o≤  for all  and 

 for all 
Ss∈

)(tgft o≤ Tt∈ . Similarly, if  is a contravariant Galois connection, 
then  and  are idempotent,  and  

),( gf
gf o fg o gfgg oo= fgff oo= .

In this section we give a covariant and contravariant Galois connection 
between the lattices  and )(Xg )(XΓ . 
Lemma 1. Let )()(: XX Γ→gϕ  and )()(: XX g→Γψ  be defined by μμϕ i=)(  
and γμγψ =)( . Then )(= Xidgϕψ o , )( XidΓ≤ψϕ o  and ψϕ,  are order-preserving, 
where id  is the identity map.  
Proof. Let )(Xg∈μ . Then we have ==)(

μ
μμϕψ io   

μμμ =}|{=)}(|{ ∈⊆ AAAiAA . Thus )(= Xidgϕψ o . Suppose that )(XΓ∈γ . 

Then we have 
γμ

γψϕ i=)(o . If , then   

. Therefore 

XA⊆ =},|{=)( γγμ
μ∈⊆ BABBAi U

ABBABB γγ ⊆⊆⊆= },|{U γγψϕ ≤)(o  and hence )( XidΓ≤ψϕ o . 

Now let λμ ≤  in . If , then   )(Xg XA⊆ ⊆⊆∈ }|{=)( BABAi μμ U
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)(=}|{ AiABB λλ ⊆∈⊆U . Therefore λμ ii ≤  and hence )()( λϕμϕ ≤  which 

shows that ϕ  is order-preserving . If γδ ≤  in )(XΓ  and δμ∈A , then 
AAA γδ ⊆⊆  and hence γμ∈A . Therefore )()( γψδψ ≤  which shows that ψ  is 

order-preserving.  
Lemma 2. Let )()(: XX Γ→′ gϕ  and )()(: XX g→Γ′ψ  be defined by μμϕ c=)(′  
and γμγψ =)(′ . Then )(= Xidgϕψ ′′ o , )( XidΓ≥′′ ψϕ o  and ψϕ ′′,  are order-
reversing.  
Proof. Let )(Xg∈μ . Then we have  
            μμμϕψ μμμ

=)}(=|{=}=)(|{==)( AiAAAXAXcAc −−′′ o . 

Thus )(= Xidgϕψ ′′ o . Suppose that )(XΓ∈γ . Then we have 
γμ

γψϕ c=)(′′ o . If 

, then XA⊆ ABBBABBXBABAc γγμγγμ
⊇⊆⊆∈−⊆ },|{=},|{=)( II . 

Therefore γγψϕ ≥′′ )(o  and hence )( XidΓ≥′′ ψϕ o . Now let λμ ≤  in . If 
, then we have  

)(Xg
XA⊆

          .  )(=},|{},|{=)( AcBXBABBXBABAc λμ λμ ∈−⊆⊇∈−⊆ II
Therefore  and hence λμ cc ≥ )()( λϕμϕ ′≥′  which shows that ϕ′  is order-
reversing. If γδ ≤  in  and )(XΓ γμ∈A , then AXAXAX −⊆−⊆− )()( γδ  and 
hence δμ∈A . Therefore )()( γψδψ ′≥′  which shows that ψ ′  is order-reversing.  
Remark 1.  Notice that since )(= Xidgϕψ o  and )(= Xidgϕψ ′′ o , so ϕ  and ϕ′  are 
injective, ψ  and ψ ′  are surjective. Also )(=)( XIm irΓϕ  and )(=)( XIm ieΓ′ϕ . 
Therefore )()(: XX irΓ→gϕ  is an order-preserving isomorphism and 

)()(: XX ieΓ→′ gϕ  is an order-reversing isomorphism, and hence the lattices 
,  and  are isomorphic, where  is the dual lattice of 

.  
)(Xg )(XirΓ

op
ie X )(Γ op

ie X )(Γ
)(XieΓ

Now by the previous Lemmas we have the following Theorem. 
Theorem 1.  (1) The pair ),( ϕψ  defined in Lemma 1, is a Galois connection 
between the lattices  and )(Xg )(XΓ ; (2) The pair ),( ϕψ ′′  defined in Lemma 2, is 
a contravariant Galois connection between the lattices  and .  )(Xg )(XΓ

By the properties of Galois connections we have the following Theorem. 
Theorem 2. (1) ψ  preserves meets and ϕ  preserves joins; (2) ψϕ o  and ψϕ ′′ o  
are order-preserving and idempotent maps on )(XΓ .  
Corollary 1. Let }|{ Ikk ∈γ  be a family of monotonic maps on X  and 

}|{ Jkk ∈μ  be a family of GTs on X . Then  
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                              ( ) ,=
kkIk Ik

γγ μμ
∈∈
II  

                              ( ) ,=
kkJk

i
Jk

μμμ
∈∈
II  

Proof. By Theorem 1, the result follows.  
Recall that a closure operator on a preordered class  is an idempotent and 

order-preserving map  such that 
S

SSf →: fidS ≤ , and a interior (or kernel) 
operator on  is an idempotent and order-preserving map  such that 

, see [6]. Therefore since 
S SSf →:

fidS ≥ )( XidΓ≤ψϕ o  and )( XidΓ≥′′ ψϕ o , by Theorem 
2, we have the following Corollary:  
Corollary 2. ψϕ ′′ o  is a closure operator and ψϕ o  is an interior operator on 

.  )(XΓ
 
3. Lower and upper bounds 

 
 Clearly, a monotonic map γ  on )(Xρ  is enlarging iff γ≤Xid  and it is 

restricting iff Xid≤γ . In this section we give an interesting lower and upper bound 
for every enlarging and every restricting map in )(XΓ , which are unique with 
respect to the idempotent property. 
The following Proposition is an immediate consequence of the properties of 
enlarging and restricting maps. 
Proposition 1.  Let )(, XΓ∈γδ  such that γδ ≤≤ Xid . then 
(1) }=|{= AAA δμδ  and )(= Xρμδ . 
(2) }=)(|{= AXAXA −−γμγ  and )(= Xρμγ . 
(3) γδ μμ =  iff AXAX δγ −− =)(  for each δμ∈A . Therefore if γ  and δ  are 
conjugate, then γδ μμ = .  

Theorem 3. Let )(XΓ∈γ  such that γ≤Xid  then 
(1) There are idempotent maps )(, XΓ∈′′′ γγ  such that γγγ ′′≤≤′≤Xid  and 

AA γγγ =′  for . XA⊆
(2) If there is )(XΓ∈η  such that γηγ ≤≤′  and AA γηγ =  for , then XA⊆

γη ′= . 
(3) If there is )(XΓ∈η  such that γηγ ′′≤≤  and , then ηη =2 γη ′′= . 
(4) If γ  is idempotent, then γγγ ′′′ == .  
Proof. (1): We define γ ′  as following:  
                              ).(},|{= XABABA ⊆⊆′ γγγ I
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It is clear that γ ′  is monotone and γγ ≤′≤Xid . Since AA γ⊆ , so we have 
AA γγγ =′ . To show that γ ′  is idempotent, if , then XA⊆ AA γ ′⊆  and hence 

AA γγγ ′′⊆′ . Conversely, let Ax γγ ′′∈ . Then Bx γ∈  for every  such that XB ⊆
BA γγ ⊆′ . Since AA γ ′⊆ , so Bx γ∈  for every  such that XB ⊆ BA γ⊆  which 

shows that Ax γ ′∈ . To find γ ′′ , we define an ascending of monotonic maps, by 
putting  and , for every successor ordinal 11 =,= −αα γγγγγ o α

βα
β γγ ∨ <

= α  

and for every limit ordinal β . Thus we obtain a increasing sequence of maps 
, the sequence stabilizes, so we have  for some ordinal L,, 21 γγ 1= +σσ γγ σ . Now 

we put , clearly, σγγ =′′ γ ′′  is idempotent and γγ ′′≤ . 
(2): Let )(XΓ∈η  such that γηγ ≤≤′  and AA γηγ =  for . If XA⊆ BA γ⊆ , then 

BBA γηγη =⊆ . Thus by the definition of γ ′ , AA γη ′⊆  and hence γη ′≤  which 
shows that γη ′= . 
(3): Let )(XΓ∈η  such that γηγ ′′≤≤  and . Then for every ordinal ηη =2 α  we 
have . Thus  and hence ηηγ αα =≤ ηγγ σ ≤′′ = γη ′′= . 
(4): By parts 2 and 3, the result follows.  
Theorem 4.  Let )(XΓ∈δ  such that Xid≤δ . then 
(1) There are idempotent maps )(, XΓ∈′′′ δδ  such that Xid≤′≤≤′′ δδδ  and 

AA δδδ =′  for . XA⊆
(2) If there is )(XΓ∈η  such that δηδ ′≤≤  and AA δηδ =  for , then XA⊆

δη ′= . 
(3) If there is )(XΓ∈η  such that δηδ ≤≤′′  and , then ηη =2 δη ′′= . 
(4) If δ  is idempotent, then δδδ ′′′ == .  
Proof. (1): We define δ ′  as following:  
                          ).(},|{= XAABBA ⊆⊆′ δδδ U
It is clear that δ ′  is monotone and Xid≤′≤ δδ . Since AA⊆δ , so we have 

AA δδδ =′ . To show that δ ′  is idempotent, if , then XA⊆ AA⊆′δ  and hence 
AA δδδ ′⊆′′ . Conversely, let Ax δ ′∈ . Then Bx δ∈  for some  such that XB ⊆

AB ⊆δ . Since ABB δδδδ ′⊆′= , so Bx δ∈  for some  such that XB ⊆ AB δδ ′⊆  
which shows that Ax δδ ′′∈ . To find δ ′′ , we define an ascending of monotonic 
maps, by putting  and , for every successor 
ordinal 

11 =,= −αα δδδδδ o α
βα

β δδ <∨=
α  and for every limit ordinal β . Thus we obtain a decreasing sequence of 

maps , the sequence stabilizes, so we have  for some ordinal L,, 21 δδ 1= +σσ δδ
σ . Now we put , clearly σδδ =′′ δ ′′  is idempotent and δδ ≤′′ . 
The proofs of the parts 2, 3 and 4 are similar to Theorem 3.  
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4 Complement and direct sum  
 

         Recall that  is said to be a complement of )(Xc g∈μ μ  if  
and . The complement of a GT 

)(= Xc ρμμ ∨

}{= ∅∧ cμμ μ  on X  is not unique in general and 
a characterization for the existence of complement was given in [2], that is,  
exists iff for every nonempty set 

cμ
μ∈A , there is Ax ∈0  such that μ∈}{ 0x . 

Similarly, we say that  is a complement of )(Xc Γ∈γ γ  if  and 
. 

X
c γγγ =∨

∅∧ γγγ =c

The following Theorem gives a characterization for the existence of a 
complement of a monotonic map γ  and shows that the complement is unique. 
Theorem 5. Let )(XΓ∈γ . Then  exists iff cγ Mγγ =  for some . 
Moreover,  and  are conjugate.  

XM ⊆

MX
c

−γγ = cγγ ,
Proof. Let )(XΓ∈γ  such that  exists. If , then  and 

, and hence . But we have 

cγ XA⊆ XAA c =γγ ∪

∅∩ =AA cγγ AXAc γγ −= Aγγ ⊆∅  and . 
Therefore 

Acc γγ ⊆∅
∅γγ =A . Now if put M=∅γ , then MA =γ  for each subset  of A X  

and hence Mγγ = . Also we have , so  
Conversely, Let 

MXAXAc −− == γγ MX
c

−γγ = .

Mγγ =  for some . We define . It is clear that 
 is the complement of 

XM ⊆ MX
c

−γγ =
cγ γ  and γ ,  are conjugate.  cγ

Corollary 2. If )(XΓ∈γ  such that  exists, then cγ cγ
μ  is a complement of γμ  

and cγ
μ  is a complement of γμ .  

Proof. Since Mγγ =  and  for some . Then we have MX
c

−γγ = XM ⊆
)(== Mc ρμμ

γγ  and )(== MXc −ρμμ γγ
. Thus by Theorem 2.6 in [2], the 

result holds.  
Let )(, Xg∈λμ  such that every )(XA ρ∈  can be uniquely expressed as a 

union of a μ -open set and a λ -open set, then )(Xρ  is the direct sum of μ  and λ  
and written λμρ ⊕=)(X . A characterization for the direct sum of two GTs on X  
was given in [2]. Similarly, Let )(, XΓ∈δγ  be idempotent maps such that 

δγ ∨=Xid  and δγγ ∧∅ = . Then we say that  is the direct sum of Xid γ  and δ  
and we write δγ ⊕=Xid . 
Theorem 6.  If  δγ ⊕=Xid , then δγ μμρ ⊕=)(X .  
 Proof. Let δγ μμ ∩∈A . Then we have ∅∩⊆ =AAA δγ  and hence 

}{= ∅∪ δγ μμ . Since γ  and δ  are idempotent, so γμγ ∈A  and δμδ ∈A  for each 
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subset  of A X , and by assumption we have AAA δγ ∪= . Thus δγ μμρ ∨=)(X . 
Now let  such that CBA ∪= γμ∈B  and δμ∈C . Then ABB γγ ⊆⊆  and 

ACC δδ ⊆⊆  which shows that ∅∩ =CB . But we have CBAAA ∪∪ == δγ , so 
BA =γ  and CA =δ . Therefore every subset  of A X  can be uniquely expressed as 

a union of a γμ -open set and a δμ -open set and hence δγ μμρ ⊕=)(X .  
The following Example shows that the converse of Theorem 6 need not be true. 
Example 1.  Let  and we define the monotonic maps },,{= cbaX γ  and δ  by  

∅∅ =}{= cγγ , }{=},{=}{ acaa γγ , }{=},{=}{ ccbb γγ , },{==},{ caXba γγ ,  
and  
                       ∅∅ =δ , }{=},{=}{=}{ bbaba δδδ , }{=}{ ccδ , 
                                 },{==},{=},{ cbXcbca δδδ .  
Then we have })({=}}{,{= aa ρμγ ∅  and }),({=}},{},{},{,{= cbcbcb ρμδ ∅  and 
hence δγ μμρ ⊕=)(X . But δγ ⊕≠Xid , because }{=}),({ ccbδγ ∧  and hence 

∅≠∧ γδγ .  
The following Theorem characterizes the direct sum of two monotonic maps. 
Theorem 7. Let )(, XΓ∈δγ . Then δγ ⊕=Xid  if and only if MXid γγ ∧=  and 

MXXid −∧ γδ =  for some .  XM ⊆
Proof. Suppose MXid γγ ∧=  and MXXid −∧ γδ =  for some . Clearly, XM ⊆ γ  
and δ  are idempotent. If , then XA⊆ AAMXAMAA δγ ∪−∩∪∩ =))(()(=  
and ∅∩ =AA δγ , and hence δγ ⊕=Xid . Conversely, suppose that δγ ⊕=Xid . 
Then by Theorem 6, we have δγ μμρ ⊕=)(X , and hence by Theorem 2.15 in [2], 

)(= Mρμγ  and )(= MX −ρμδ  for some . Thus XM ⊆

}|{=}|{ MAAAAA ⊆⊆ γ  and }|{=}|{ MXAAAAA −⊆⊆δ . Now if , 
then by assumption we have 

XA⊆
AA⊆γ  and γμγ ∈A , so )(= AidMAA MX γγ ∧∩⊆ . 

But )(MMA ρ∈∩ , so AMAMA γγ ⊆∩⊆∩ )( . Therefore we have 

MXid γγ ∧= . Similarly, we have MXXid −∧ γδ = .  
Theorem 8.  Let )(, XirΓ∈δγ . Then δγ ⊕=Xid  if and only if δγ μμρ ⊕=)(X .  
Proof. If δγ ⊕=Xid , then by Theorem 6, we have δγ μμρ ⊕=)(X . Conversely, 
suppose that δγ μμρ ⊕=)(X . Then by Theorem 2.15 in [2], we have )(= Mρμγ  
and )(= MX −ρμδ  for some . Since XM ⊆ γ  is idempotent and restricting if 

, then we have XA⊆ AA⊆γ  and γμγ ∈A , so )(= AidMAA MX γγ ∧∩⊆ . But 

)(MMA ρ∈∩ , so AMAMA γγ ⊆∩⊆∩ )( . Therefore we have MXid γγ ∧= . 
Similarly, we have MXXid −∧ γδ =  and hence by Theorem 7, the result follows.  
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Monoton inikas və ümumiləşmiş topoloqiya  
şəbəkələri haqqinda 

 
Haşem Mirhasenxani 

 
XÜLASƏ 

 
İşdə monoton inikasın  şəbəkələri  və  boş olmayan çoxluqlar üzərində bütün  

ümumiləşmiş topoloqiyalar arasındakı münasibətləri öyrənilir. Onlar arasında kovariant və 
kontravariant Kalois əlaqələri  təsvir edilir. Həmçinin iki monoton inikasın düz cəmini təyin 
edirik və bu cəmin xarakteristikasını və iİnikasın genişlənməsi və məhdudluğunun yuxarı 
və aşağı sərhədləni verilir. 

Açar sözlər:  ümumiləşmiş topologiya, monoton inikas , şəbəkə. 
 

О решетках монотонных отображений и  
oбобщенных топологий 

 
Гашем Мирхосейнхани 

 
РЕЗЮМЕ 

 
Мы изучаем некоторые отношения между решетками монотонных отображений 

и всех обобщенных топологии по непустых множеств. Мы представляем 
ковариантные и контравариантные Калоис связи между ними. Мы также определяем 
прямую сумму  двух монотонных отображений и характеризируем эту сумму,  даем 
интересные нижнюю и верхнюю границу  для расширения и ограничения 
отображений. 

Ключевые слова:  обобщенная топология,  монотоническое отображение,  
решетка.  
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